tel. +48 22 7202302 fax +48 22 7202305 e-mail czaki@czaki.pl

page 1 of 2

PROGRAMMABLE RAIL-MOUNT TRANSMITTER

CAR

TED-28

TED series

output signal 4 ... 20 mA (TED-27, TED-28) 0 ... 10 V (TED-37, TED-38) input - output galvanic insulation (TED-28, TED-38) programmable input signal range programmable sensor type: Pt100, Ni100, J, K, N, S, R, B, T RTD sensor can be connected in 2, 3 or 4-wire system internal or external compensation of thermocouple cold junction \square sensor failure indication by LED for mounting on 35 mm wide rail, according to DIN EN 50022-35

The transmitter TED is designed to converting resistance of temperature sensor or voltage of thermocouple sensor to standard current signal 4...20 mA (TED-27, TED-28) or voltage 0...10V (TED-37, TED-38).

Transmitters TED-28 and TED-38 provide galvanic insulation between input and output terminals.

Most parameters such as: sensor type, input signal range or mode of cold junction compensation, may be adapted by user for specific requirements of his measuring system.

The transmitter is programmed using a personal computer with USB port via **IF-2013U** interface which is also offered. The housing is designed for mounting on 35 mm wide rail, according to DIN EN 50022-35.

TECHNICAL DATA

Sensor type, measuring range	programmable, see Table 1				
Maximum range, accuracy, thermal drift	see Table 1				
Pt100 or Ni100 sensor connection	2, 3 or 4-wire, programmable				
Pt100 or Ni100 connection resistance (2 and 3-wire)	<10 Ω (each wire)				
Maximum resistance for 2-wire connection which can be correct	0,0020,00 Ω (sum of both wires)				
Bias current of Pt100 or Ni100 sensors	< 0,25mA				
Compensation of thermocouple cold junction	internal or external, programmable				
Maximum error of thermocouple cold junction internal compensa	±1 °C				
Temperature range of thermocouple cold junction external compe	-50,0 100,0 °C				
Range of temperature offset	-10,0 10,0 °C				
Galvanic insulation between input and output terminals (TED-28 a	500 V AC				
Output signal	TED-2x	4 20 mA or 20 4 mA, programmable			
	TED-3x	0 10 V or 10 0 V, programmable			
Linear region of output signal	TED-2x	3,8 20,5 mA			
	TED-3x	0,0 10,3 V			
Output signal delay after power on		ca. 5 s			
Digital filter time constant (1st order filter))		selected: 0,2; 1; 2; 4; 8; 16; 32 s			
Sensor failure indication	TED-2x	3,5 or 23 mA, programmable			
	TED-3x	0 or 11,5 V, programmablea			
Power supply	TED-2x	8 36 V DC / 24 mA (from current loop)			
	TED-3x	14 36 V DC / 18 mA			
Ambient temperature	0 +60 °C				
Dimensions (height x width x depth) / weight	98 x 17,5 x 56,4 mm / ca. 50 g				

PROGRAMMABLE RAIL-MOUNT TRANSMITTER TED series

page 2 of 2

Sensor type	Measuring range [°C]	Minimal measuring range [°C] ⁽¹⁾	Accuracy- largest value (2),(3)	Thermal drift / 10°C - largest value 0,07% or ±1,5°C		
B PtRh30-PtRh6	400 1800	200	0,2% or $\pm 5^\circ$ C			
J Fe-CuNi	-100 1000	50		0,07% or ±0,7°C		
K NiCr-NiAl	-100 1200	50	0,2% lor $\pm 1^\circ \text{C}$			
N NiCrSi-NiSi	-100 1300	100				
R PtRh13-Pt	0 1600	200	$0.2\% \text{ at } \pm 2^{\circ}$	0,07% lor \pm 1,5°C		
S PtRh10-Pt	0 1600	200	0,2% or ±2°C			
T Cu-CuNi	-100 400	50	0,2% or $\pm 1^{\circ}$ C	0,07% or \pm 0,7°C		
Pt100	-100 800	30	0,15% or ±0,2°C	0,05% or $\pm 0,1^{\circ}$ C		
Ni100	-60 180	30	0,15% 01 ±0,2 C			
Voltage [mV]	-10 65 mV	2 mV	0,2% or \pm 0,05mV	0,07% or \pm 0,03mV		
Resistance $[\Omega]$	60 370 Ω	20 Ω	0,15% or \pm 0,1 Ω	0,05% or \pm 0,05 Ω		

 Table 1.
 Summary of sensor types, input signal ranges and accuracy.

⁽¹⁾ Minimum difference between upper and lower range value.

 $^{\scriptscriptstyle (2)}$ Error values in [%] are relative to user-defined range.

 $^{\scriptscriptstyle (3)}$ The ambient temperature = 23 °C.

⁽⁴⁾ Thermal drift means that the error may change with the ambient temperature.

ORE	DERING CODE	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	TED —				·				-
(1)	Model of transmitter	27	outpu	ıt 4 20 m	A, without	insulation			
		37	outpu	ıt 0 10 V,	without in	sulation			
		28	outpu	ıt 4 20 m	A, with ins	sulation			
		38	outpu	ıt 0 10 V,	with insul	ation			
(2)	Sensor type	<u>Pt</u>	<u>100</u> , Ni100,	J, K, N, S,	R, T, mV,	Ohm			
(3)	Lower range value	value in [°C], [mV] or [Ω] (default lowest value for selected sensor type)							
(4)	Upper range value	va	lue in [°C], [mV] or $[\Omega]$	(default high	ghest value	for selecte	d sensor typ	be)
(5)	Connecting Pt100, Ni100 or	2 () ^(*) , <u>3</u> , 4 - v	vires					
	thermocouple cold junction compensation	<u>I</u> -	<u>I</u> - internal (automatic), E () ^(**) - external (user defined)						
(6)	Converting characteristic	N	- normal (4 .	20 mA, 0	10 V), R	- reverse (2	20 4 mA	, 10 0 V)	
(7)	Time constant of digital filter [s], selected	<u>0</u> ,	1, 2, 4, 8, 1	6 , 32 (O rea	lly means O	,2 s)			
(8)	Alarm output signal	<u>H</u>	- high level (23 mA or 1	1,5 V), L -	low level (3	,5 mA or 0	V)	
(*)	Sum of resistances of wires can be given i	n bracke	ets.						

(**) Thermocouple cold junction temperature must be given in brackets.

<u>Default values were marked by under-scoring.</u> Factory programmed in case of incomplete ordering code. The specification of the model, i.e. point (1) is compulsory.

Example for order:TED-27-Pt100-0-150-2(0,8)-N-2-LdenotesPt100temperaturetransmitterforrange0...150°Cwith 4 ... 20 mA signal output. The sensor is connected with two wires (sum of resistances of wires = 0,8 Ω);
time constant = 0.5 s; in the case of sensor failure, output current is 3,5 mA.TED-38-K-0-600-I-N-1-H denotes thermocouple K temperature transmitter for range 0 600 °C with 0 ...10V
signal output galvanically insulated from sensor. Internal cold junction compensation; time constant = 1 s;
in the case of sensor failure, output voltage is 11,5 V.