CZAKITHERMO-PRODUCT

PL-05090 Raszyn ul. 19 Kwietnia 58 tel. +48 22 720-23-02 fax +48 22 720-23-05 e-mail: handlowy@czaki.pl

RD-202 TEMPERATURE CONTROLLER USER'S MANUAL

Application

RD-202 is a microprocessor based temperature controller for applications requiring simple on-off control systems. Adjustable hysteresis makes the controller more flexible. The instrument is designed to be mounted on the 35 mm rail (DIN EN 50022-35). RD-202 is manufactured in two versions: for thermocouple and for RTD's sensor (3-wire). When RD-202 works with thermocouple sensor, the cold junction temperature is compensated automatically. RD-202 temperature controller is equipped with relay contacts available at the output terminals.

- The user can adjust following parameters:
- set point value
- hysteresis
- minimum relay off time

Specifications

Variant	Set point temperature range	Sensor
RD-202-Pt100/1	0.0 +199.9 °C	Pt100
RD-202-Pt100	0 +800 °C	Pt100
RD-202-J	0 +700 °C	Fe-CuNi (J)
RD-202-K	0 +1200 °C	NiCr-NiAI (K)
RD-202-N	0 +1300 °C	NiCrSi-NiSi (N)
RD-202-B	+400 +1800 °C	PtRh30-PtRh6 (B)
RD-202-S	+200 +1600 °C	PtRh10-Pt (S)
RD-202-R	+200 +1600 °C	PtRh13-Pt (R)

Accuracy of measurement (for ambient temperature 23 °C ± 5°C)	0.25% of set point temperature range ±1 digit	
Hysteresis	0.1 25 °C for RD-202Pt100/1	
	1 250 °C for other cases	
Minimum relay off time	1 600 seconds	
Output	electromechanical relay, 5A, 250 VAC	
Display	LED 10 mm, red	
Power supply	230VAC, 50Hz, 2VA	
Housing	IP30	
Ambient temperature	0 +45 °C	
Dimensions (height x width x depth)/weight	90 x 53 x 58 mm / ca. 200g	

Fig.1 Front panel layout and terminals connections.

RD-202 is an on-off temperature controller with hysteresis. The instrument output is an electromechanical relay. Temperature controlling is carried-out in the way that the relay turns-on (then terminals 7 and 8 are connected) when the sensor temperature Tc falls below Td (see Fig. 2) and the relay turns-off when the sensor temperature reaches the set point temperature Tz. The parameter minimum relay off time enables additional protection of the relay against too frequent switching.

Fig.2 Example of temperature controlling.

Example

In this example RD-202-J will be described. In this case the set point temperature range is 0..700 °C.

minimal relay off time: 34 seconds

Parameters: set point temperature Tz: 350 °C; hysteresis AT: 2 °C low threshold temperature Td: 350°C - 2°C=348°C

Set point temperature Tz programming

Press and hold the button 💿 for about 1 second.

When the LED SV turns-on, the instrument enters into programming mode of set point temperature.

Now the display shows the value of set point temperature Tz in °C.

The user can change the set point temperature with buttons \square or \blacksquare .

In order to accept the new value, the button $\[mathbb{D}]$ should be pressed down.

The display shows current temperature of the sensor now.

Hysteresis ΔT programming

Press and hold the button \bullet for about 3 seconds.

When the dot turns-on in the display (see Fig. 1), the controller enters into programming mode of hysteresis. Now the display shows the value of hysteresis in °C.

The user can change the hysteresis with buttons 🔤 or 🔽.

In order to accept the new value, the button 💁 has to be pressed down.

The display shows current temperature of the sensor now.

Minimum relay off time programming

Press and hold the button 💿 for about 8 seconds.

When the LED OUT turns-on, the instrument enters into programming mode of minimum relay off time. Now the display shows the value of minimum relay off time in seconds.

The user can change the value of the parameter with buttons \square or \square .

Then the button 💁 should be pressed down.

Messages

- this message appears when the power supply is connected; it indicates that microprocessor loads parameters from non-volatile memory; the message disappears in 10 seconds and the controller starts displaying actual temperature of the sensor (Tc).
- *Err* this message indicates damage of the sensor or temperature of the sensor is out of range
- *ErrL* this message appears when the ambient temperature is too high; in this case the parameters of the controller cannot be saved in non-volatile memory; when this message appears, the controller should be immediately disconnected from the power supply

Mounting procedure

The controller should be mounted in a panel using an attached mounting bracket.

Fig. 1 shows connection diagram. It is recommended to use shielded cable to connect the input sensor. For thermocouple sensor proper compensating cable (preferable shielded) has to be used. If a shielded cable is used, the shield should be connected at one point only. Don't run input wires together with power cables. The output relay and the power supply should be connected using copper cables.

Contents of package

- ✓ Temperature controller with mounting bracket.
- $\ensuremath{\,^{\prime\prime}}$ In the case of controller working with platinum sensor Pt100, a testing resistor.
- 🖉 User's manual.

Maintenance

The controller doesn't require any maintenance. In the case of failure please contact Commercial Department of CZAKI THERMO-PRODUCT.

Default settings

Set point temperature: 100 °C, hysteresis: 1°C, minimum relay off time: 10 seconds.

Testing

In the case of controller working with platinum sensor Pt100: instead of the sensor please connect the testing resistor. The controller should display the temperature corresponding to its resistance. In the case of controller working with thermocouple: please connect sensor input terminals. The controller should display the ambient temperature.