CZAKI THERMO-PRODUCT ul. 19 Kwietnia 58 05-090 Raszyn-Rybie tel. (022)7202302 fax. (022)7202305 www.czaki.pl handlowy@czaki.pl

TEMPERATURE CONTROLLER

R - 700

USER'S GUIDE

1. Temperature controller characteristics	3
2. Conection diagram	3
3. Front panel description	4
4. Modes of work	8
4.1.Setting the value of temperature set	9
5. Algotithm of control	10
5.1. On/Off & On/Off with hysteresis	10
5.1.1. The choice of algorithm On/Off	11
5.1.2. Setting hysteresis value	12
5.2 Algorithm P,PI,PID	13
5.2.1. Setting proportional gain	15
5.2.2. Setting integraltime constant	16
5.2.3. Setting derivative time constant	17
5.2.4. Setting pulse repetition period value	18
6. Alarm	19
6.1. Setting alarm mode	20
6.2. Setting first threshold value of alarm	21
6.3.Setting second threshold value of alarm	22
7. Communication.	23
7.1. Setting controller address 7.2. Setting speed of transmission	24 25
7.3. Setting transmission control mode	26
7.4. Comunication protocol	27
7.5. Mesured cycle period	27
7.6. Saving results mode	27
7.7. Printing results mode	27
	27
7.8. List of command	
8. Measuring unit	29
8.1. Sensors	29
8.2. Resolution of displayed value	29
8.3. Offset (shift characteristic)	29
8.4. The choice of sensor type	30
8.5. Setting resolution of displayed value	31
9. System's parameters	33
9.1. Protection	33
9.2. Reset	33
9.3. Protecion setting.	34
9.4. Restore factory setting	35
Technical data	36

1.Temperature controller characteristics

R-700 type temperature controller is a general-urpose single-channel microprocessor unit that performs followins features:

- Its input to be easily adapted to all most often applied types thermocouples and thermoresistors
- PID or hysteresis control algorithm is to be selected by the user
- A relay is operated by five programmable modes
- Double four digit LED-display and supplementary two lamps of relays states
- High power output relay or output for SSR;
- Sygnalization of sensor damaged

2. Connection diagram

Tab. 1 Connection between controller and PC computer

3. Front panel description

Controller R-703 has double display and three push-button keyboard placed on the trmperature controller front wall. Appearance of the front panel is whown in the figue below:

- 1 process temperature display (PV)
- 2 set temperatue display (SV)
- 3 On/Off algorithm indicator
- 4 PID algorithm indicator
- 5 output indicator
- 6 alarm indicator
- 7 keyboard

Kev Controller work mode Action 1. NORMAL mode, holding time >3s. - enter to MENU mode Up 2 MENUmode: - during moving at menu structure - back off about one level in MENU structure - during changing parameter value - increment about one parameter value 1. NORMAL mode, holding time >3s. - modify set temperature (SV) Shift 2. MENUmode: - rewrap next MENU positions - during moving at menu structure - during changing parameter value - change of modified figure Enter 1 NORMAL mode - change displayed value between SV or PWM - confirm choose 2 MENU mode

Tab. 2 Key functions.

Fig.3 Wiew of front wall

List of parameters and their symbols.

Symbol	on display	Range of value	Factory settings	Meaning /sign in manual text
	P_bn	0.0 99.9	10.0	proportional gain/ P_bn
FEGL	E_ 10	0 1000 [s]	1000 [s]	integral time / t_in
	t_d,	0 9.99 [s]	0 [S]	derative time / t_di
	hy5E	0.0 100.0 [°C]	1.0 [°C]	hysteresis / hyst
	[У_Е	0 240 [s]	10 [s]	okres impulsowania / cy_t
	EAL	0 5	0	alarm mode / tal
AL_I	ΡΙ	-99.9 1800 [°C]	2 [°C]	first level / P1
	P2	-99.9 1800 [°C]	4 [°C]	second level / P2
	rSCE	0 240 [s]	10 [s]	read period /rSCt
пепо	EPrl	0 2	0	read results / tPrl
	ЕПЕП	0 2	0	save results / tNEN
SYSE	PrOt	0 2	0	protection / PrOt
2226	rESE	0, 1	0	reset / rESE
	ShSr	T,J,K,R,S,B,N, Pt100,Ni100	к	sensor type / SnSr
EEPr	ЕРО,	0, 1	0	resolution / tPOi
	LoFF	-9.9 9.9 [°C]	0.0 [°C]	offset / toFF
	Rdr	1 99	1	meter address / adres
-232	ЬЯIJд	1200,2400, 4800,9600	2400	speed of serial transmision / bAUd
	PArl	Even,odd,none	none	parity of serial transmision / PArl Tab. 3

<u>Attention!</u> Parameters in gray background can be modidying only in |SPEC mode. Also grayed parameters (conected with serial port) are not implemented in controller R-703.

4. Modes of work

Controller R-700 can work in two modes:

- NORMAL controllers executes all charged control and alarm functions. Upper display shown measured temerature, and bottom shown (despide of choose) set temperature (SV) or average power (PWM) expressed in percentages.
- SPEC realized all functions mode NORMAL and also it makes possible modifying parameters at grey background at table 1. To enter SPEC mode turn off the unit and next press button and still pressing that key turned on the unit. Key must be pressed until unit enters to menu.

R-703 offers following types of algorithms:

On/Off with hysteresis, P, PI, PID

Choice between algorithms users makes by setting parameters like in table 2.

Type of controller	P_bn	E_ 10	E_d,	HYSE
On/Off On/Off with hysteresis	= 0 = 0	-/- -/-	-/- -/-	= 0 □ 0
Р	□ 0	= 0	= 0	-/-
PI	□ 0	□ 0	= 0	-/-
PID	□ 0	□ 0	□ 0	-/-

4.1. Setting the value of temperature set.

Value of temperature set can be setting only in NORMAL mode. The folowing diagram shows action how to change temperature set.

5. Algorithms of control

5.1 Algorithm On/Off type and On/Off with hysteresis.

This algorithm is the simplest type of controller without correction. It means, that output signal may have two values only 0 or 100%.

As it is easy to notice, object temperature (see fig. under) oscillates around temperature set with hysteresis.

Controller with hysteresis is suitable for the objects with small interference influence. In case of the object with high delay values, is accompanied with overshoot.

5.1.1. The choice of algorithm On/Off.

5.1.2. Setting hysteresis value.

5.2 Algorithm P, PI, PID

Temperature control basing on quasi-linear algorithm proportional (P) integral (I) and Derative (D) makes possible:

- * selection of characteristics of reaching the temperature set by selection of three parameters
- * easy control of properties of the line object-controller
- * elimination static error
- * smaller interference influence

Gain (P_bn).

Proportional gain (P_bn) in a basic parameter of PID algorithm, it affects in equal degree on all parameters of control algorithm. In case of R-703 controller proportional amplification is expressed in percentages of temperature range (individual for each sensor type).

Increase of proportional amplification increase sensivity to temperature changes of the object and narrow the linear zone of controller's work.

Integral time-constant (t_in).

The integral element eliminates static component error. Incresase of t_in parameter slows down the process of reaching the steady state (SV) of object temperature (PV).

Derivative time-constant (t_di).

The derivative element influences on value of average power between sampling of temperature. If temperature grows up, then derativatve element reduces power, the growth temperature slows down. If value of temperature falls down, derivative element increases heater power. Influence of derivative upon heater power is the higer, the higer is the value of derivative time t_di. This parameter should be used with fast-changed object, where immediate reaction is requied on appearing changes.

Pulse repetition period (cy_t).

Value cy_t should be several times shorter than object timeconstant. Too small value of this paramater can shorten the time of life relay contacts.

EXAMPLE

temperature set(SV) = 400.0 °C temperature measured(PV) = 310.0 °C amplification(P_bn) = 10.0 integral element(t_in) = 0 s derivative element(t_di) = 0 s pulse repetition period(CY_t) = 10 s Tmax. = 1800 °C

proportional range(PR) = (1/P_bn) x Tmax. PR = 0.1 x 1800 °C = 180 °C

linear work range:

LW = (SV - PR)

LW = (400.0 - 180.0) = 220.0 °C

PWM value for PV = 310.0 °C

 $PWM = \frac{SV - PV}{PR} \times 100 \%$ $PWM = \frac{400.0 - 310.0}{180.0} \times 100.0 \%$ PWM = 50.0 %

time of relay on t_on:

t_on =CY_t * PWM t_on = 10s * 50.0 % t_on = 5.0 s

5.2.1. Setting proportional gain (P_bn).

5.2.2. Setting integral time-constant value (t_in).

5.2.3. Setting derivative time-constant value (t_di).

5.2.4. Setting pulse repetition period value (CY_t).

<u>6. Alarm</u>

The R-703 controller is equiped with level alarm, wich can work in one of five modes of work. Could be used by user to monitoring the control process, informing about corrent state of process and possible risk of overheating.

Alarm can be used also as additional control output working in On/Off mode or On/Off with hysteresis mode.

Mode of alarm output ilustrates fig. 6 below.

Zachowanie się wyjścia alarmowego obrazuje rysunek 7.

Attention!!!

Value od alarm's level should be P1<P2, in other time alarm didn't work property

6.1. Setting alarm mode (tAL).

6.2. Setting first threshold value of alarm (P1).

6.3. Setting second treshold value of alarm (P2)6

7. Communication

R-720 is equipped with RS-232 serial port (or RS485 in option) interface making possible co-operation with the computer. Serial port working with four different transmission speed. Via serial interface it is possible to read measured temperature and also read and write some internala paramaters.

Data between computer and controller are transmitted ASCII code and contains 8 data bits and one stop bit. For correct work user should set up:

- Transmission speed (boud). It is possible one of four transmission speed: 1200, 2400, 4800 i 9600 kbps;
- Parrity control (PArl). Options: even, odd, none
- **Controller address**. Addressing makes possible to work several devices connected to one serial port (RS-485 interface only).

Number of address range is from 0 to 99.

7.1. Setting controller address (Adr).

7.2. Setting speed of transmission (bAUd).

7.3. Setting transmission control mode (PArl).

7.4 Communication protocol

Serial interface enables programming controller without using controller's keyboard. To read value of one parameter, user should use special data format presented at fig.9.

Addressing makes possible changes values of paramaters only in users intresting controller.

In case when address will be equal 00 data will be interpreted by all contected controllers. Protocol don't recognizes big and small letters. All parameters values, listed below, could be read and write, apart PV value which can be read only.

7.5 Measured cycle period (RSCt)

This is period beetween temperature measurement which is saving in memory or sending via serial interface.

7.6 Saving results mode (tnEn)

R700 offers saving results of measurements in built-in memory. Possible option of saving (state of tnEn parameter):

0 - results are not saving

1- results (max. 300) are saving, when memory will be full, saving will be stoped

2 - result are saving, when memory will be full, saving will be continued by rewriting memory

7.7 Printing results mode (tnEn)

R700 can transmit measured results via serial interface, measured or written in the internal memory.

Possible option of printing (state of tPrl parameter)

0 - results are not sending via serial interface

1- measured temperature results are printing directly by serial

interface (ASCII code) with RSCt time period

2 - stored data (results of measurement) are transmitting via serial interface, this option donesn't erase memory

Command	Description	Attri	butes
code		R	W
T, t	temperature value (PV)	+	-
A, a	alarm works mode ()	+	+
B, b	first alarm threshold ()	+	+
С, с	second alarm threshold ()	+	+
R, r	measure cycle period()	+	+
Р, р	printing results ()	+	+
U, u	saving results mode ()	+	+
S, s	speed of transmission ()	+	+

7.8 List of command

Read command (read measuring temperature by controller of 01 address example)

0	1	т	?	
ad	res	code		<cr></cr>

R-700 example answer : +0022.8

(exactly: <LF>, '+0022.8', <CR>, <LF>)

Write command (write alarm	0	1	в	+	1	2	5		0	
level example)	add	ress	code	+/-		ne	w valu	ıe		<cr></cr>
Write command		0	1	S	6	0	0]	
(write speed of transmission vaule example)		ad	dress	code	l nev	v valu	Ð	I _{<cr></cr>}		

Fig. 9 Command format

8. Measuring unit.

8.1 Sensors (SnSr)

The controller R-703 is universal controller, which work with all kind of sensors offered through Czaki Thermo Product.

* with thermoresistance sensors (PN-EN60751+A2):

- Pt100 => 0.0 ... +850.0 °C;
- Ni100 => 0.0 ... +180.0 °C;

* and thermocouple sensors (PN-EN60584):

- J (Fe-CuNi)	=>	0.0 +1000 °C;
- K (NiCr-NiAl)	=>	0.0 +1200 °C;
- T (Cu-CuNi)	=>	0.0 +230.0 °C;
- R (PtRh13-Pt)	=>	+200.0 +1600 °C;
- B (PtRh30-PtRh6)	=>	+400.0 +1800 °C;
- S (PtRh10-Pt)	=>	+200.0 +1600 °C;
- N (NiCrSi-NiSi)	=>	0.0 +1300 °C;

8.2 Resolution of displayed value (tPOI)

R-703 could displayed measured temperature with 1°C or 0.1°C resolution.

It is depending of parametr TPOI. If TPOI is:

0 - results are displayed with 0.1° C resolution;

1 - results are displayed with 1° C resolution.

8.3 Offset (toFF)

Offset is setting in case of solid difference between real temperature and measure temperature. This parameter can compensate for example, the influence of wires resistance when is uses two-wire thermoresistance sensors.

8.4. The choice of sensor type (SnSr).

8.5. Setting resolution of displayed value (tPOI).

8.6. Setting offset (toFF).

9. Systems parameters.

9.1 Protection

The controllers offers the possibility of blocking set the parameters of work, to making impossible the access unauthorised personel.

Protection can accept three values:

0 - switched off protections;

1 - protection for all parameters without same protection;

2 - protection for all parameters with protection too;

In this case, all changes are blocked.

Removal protection is possible only in SPEC mode.

9.2 Reset.

This option restores factory setting of parameters from schedule 4.

To restore parameters put value 1, exit from MENU, turned off the unit and again turned on the unit.

9.3. Protection setting (Prot).

9.4. Restoring factory settings (rESE).

Technical data

Vorking temperature range J (Fe-CuNi) [0 +1000] °C K (NiCr-NiAl) [0 +1200] °C
T (Cu-CuNi) [0 +230.0] °C
R (PtRh13-Pt) [+200.0 +1600] °C
S (PtRh10-Pt) [+200.0 +1600] °C
B (PtRh30-PtRh6) [+400.0 +1800] °C
N (NiCrSi-NiSi) [0 +1300] °C
Pt100 [0 +850.0] °C
Ni100 [0 +180.0] °C
Resolution of temperature 0.1 [°C] for T<1000[°C]
1 [°C] for T>1000[°C]
Femperature measurement < 0.3 [°C] ± 2 digits for T<200.0[°C]
< 0.7 [°C] ± 1 digit for 200.0 <t<500.0[°c]< th=""></t<500.0[°c]<>
< 1.5 [°C] ± 1 digit for 500.0 <t<1000[°c]< th=""></t<1000[°c]<>
< 2 [°C] ± 1 digit for T>1000[°C]
Reading temperature period 1 [sec.]
Range of parameters like in table 4
Type of outputs mechanical relay
Max. curent of relay 5 [A]
Max. switching voltage 250 [V] AC
Max. switching power 1000 [VA]
Aax. frequecy switching 600 cycle/h at nominal duty
Max. frequecy switching 600 cycle/h at nominal duty 72 000 cycle/h without duty
72 000 cycle/h without duty
72 000 cycle/h without duty Protection rating IP 40 from front wall
72 000 cycle/h without duty Protection rating IP 40 from front wall IP 30 from rear (conectors) wall
72 000 cycle/h without duty Protection rating IP 40 from front wall IP 30 from rear (conectors) wall Power supply 230V +10% -20%, 560Hz, 3VA
72 000 cycle/h without duty Protection rating IP 40 from front wall IP 30 from rear (conectors) wall Power supply 230V +10% -20%, 560Hz, 3VA Ambient temperature 0+50 [°C]
72 000 cycle/h without duty Protection rating IP 40 from front wall IP 30 from rear (conectors) wall Power supply 230V +10% -20%, 560Hz, 3VA Ambient temperature 0+50 [°C] Relative humidity < 80 [%]