CZAKI THERMO-PRODUCT

05-090 Raszyn ul.19 Kwietnia 58 tel. 22 7202302 fax. 22 7202305 handlowy@czaki.pl www.czaki.pl

Temperature meter

EMT-102

Operating manual

1 Safety rules

- read these instructions before use
- before turning on the power, make sure that the wires are connected correctly
- ensure operating conditions (power supply, humidity, temperature) according to specifications

2 Characteristics of the device

EMT-102 is a microprocessor-based temperature meter designed to work with thermoresistive sensors (RTD) **Pt100** according to PN-EN 60751, **Ni100** according to PN-83/M53852, thermoelectric (TC) **B**, **J**, **K**, **N**, **R**, **S**, **T** according to PN-EN 60584-1 or semiconductor DS18B20.

It is designed to be installed on a board or control panel.

It is characterized by high accuracy, low power consumption and immunity to interference in industrial environment. It has a digital readout with a display resolution of 0.1°C or 1°C

3 Technical data

General:

Execution	type of senson	indication range (°C)
EMT-102-Pt100	Pt100	-199 850
EMT-102-Ni100	Ni100	-60 180
EMT-102-J	Fe-CuNi	-199 1200
EMT-102-K	NiCr-NiAl	-199 1370
EMT-102-N	NiCrSi-NiSi	-199 1300
EMT-102-T	Cu-CuNi	-199300
EMT-102-S	PtRh10-Pt	01700
EMT-102-R	PtRh13-P	01700
EMT-102-B	PtRh30-PtRh6	400 1800
EMT-102-DS	DS18B20	-55 125

- lead resistance for RTD (Pt100/Ni100)< 10 per wire			
- Electronic temperature compensation for cold ends of thermocouples			
LED digital readout (4 digits):			
- display range999 - 9999			
- height of digits 20 mm			
- LED color Red			
Accuracy (for ambient temperature of 23°C±5°C):			
- RTD sensors (Pt100/Ni100) 0.15% of the indication range ±1			
digit			
- TC thermoelectric sensors			
additional error of compensation of cold ends \pm 0,4°C			
- DS semiconductor sensors			
\pm 2°C for range < -10 and > 85°C			
Display resolution (automatically switchable):			
- for range -99.9 999,9 0,1°C			
- for range < -100°C and >1000°C			
Signaling (message on the display):			
- power on			
- sensor range exceeded bottom ErLo			
- sensor range exceeded top ErHi			
Board enclosure			
- recessed window 92 x 45.2 mm			
- mounting with mounts on the side			
- front panel material Polycarbonate			
- body material self-extinguishing Noryl			
Degree of protection of the housing:			
- front side lp61			
- from connector side lp30			

Power supply:

- main	230V AC (+10% - 15%), 50Hz, 3VA
- LV low-voltage (optional)	10-30V DC, 2W
Operating temperature:	25°C+50°C
Relative humidity:	0 - 90% RH non-condensing
EMC compatibility:	industrial environment
-Immunity	according to PN-EN 61000-6-2:2002(U)
-emissivity	according to PN-EN 61000-6-4:2002(U)4

Installation recommendations

General notes:

- mount in the board with mounting brackets
- do not power the device from the same lines as high power devices without appropriate filters
- avoid running sensor cables in the immediate vicinity and parallel to power lines
- avoid the proximity of devices generating high impulse interference
- include a delay-free 1A fuse in the power supply circuit

Connection of thermoresistive sensors (RTD) Pt100 / Ni100:

- copper connection wires should have equal length and cross section
- it is recommended to connect sensors using the 3-wire method
- if the distance between the meter and the sensor is not large (2-3m), it is acceptable 2-wire connection
- 2-wire method introduces an error of 1°C for each 0.4 of cable resistance

Connection of thermoelectric sensors (TC) B, J, K, N, R, S, T:

- the thermoelectric sensor must be connected with a suitable wire compensation
- connecting the sensor with copper wires will introduce a significant measurement error

Connection of 1-wire semiconductor sensors (DS18B20):

- the sensor should be connected using a 3-wire cable with the smallest possible

capacitance between wires

- The sensor must be connected according to the following drawing, incorrect connection risks damage to the sensor

How to connect the power supply and sensor to the EMT-102

5. Meter operation

- after succesful installation the meter is ready for operation
- the meter does not require periodic maintenance

Control of the meter working with RTD (Pt100 / Ni100):

- connect a test resistor in place of the sensor (to terminals 6-7-8), the meter should show the temperature corresponding to the resistance of the resistor (the meter is supplied with a control resistor 70...80°C for Pt100 or 45...55°C for Ni100).

Check of the meter working with TC thermocouples:

- short circuit the input terminals of the sensor (terminals 6-8), the meter should show the ambient temperature.